常承林 副教授 硕士生导师 工学博士
·重庆市学术技术带头人后备人选(推荐人选2024.09)
·中国化工学会信息技术与应用委员会青年委员(2024.10)
·浙江省海洋科技创新平台专家(2022.06)
·重庆市科学技术青年代表(2024.09)
·教育部人事司人才计划评审专家(2023.12)
·中国高等教育学会秘书处成员(2024.06)
·中国系统工程学会过程系统工程会员(2022.09)
·Frontiers in Thermal Engineering 审稿编辑(2022.06)
·工作单位经历:重庆大学 化学化工学院化学工程系 化学工程与技术 智能化工团队 副教授
·博士后工作站:浙江大学 化学工程与生物工程学院 化学工程与技术 博士后/助理研究员
·联合培养经历:The University of Oklahoma(美国) 化学工程 国家留学基金委联合培养博士
·硕博学习经历:中国石油大学(北京) 化学工程与技术 硕博连读 石化工业能评与碳减排团队
·本科学习经历:合肥工业大学(211) 生物化工 工学学士学位 生化反应器优化设计研究方向
·团队招生信息:课题组为重庆大学智能化工团队,欢迎化学工程与工艺、过程装备控制工程
自动化、人工智能、计算机、生物工程等专业莘莘学子报考/推免研究生,通过网络邮箱联系
联系方式
·重庆大学虎溪校区化学化工学院理科楼LC112
·Email: chenglinchang@cqu.edu.cn
研究方向
01. 智能化工系统工程及过程控制优化
02. 基于智能优化算法的换热网络设计
03. 考虑设备详细设计的换热网络改造
04. 炼油厂氢网络设计改造及全局优化
05. 采用智能进化算法的换热器详细设计
06. 石化工业节能降碳与节水减污关键技术
07. 煤化工园区能量质量集成过程建模与优化算法
08. 融合数据驱动与过程机理的化工过程建模优化
09. Aspen Plus、Python/Pyomo、Gams/gamspy、HTRI、MATLAB
主持科研项目
01. 国家自然科学基金青年科学基金项目,国家级课题,2021.01-2023.12,结题,主持
02. 中国博士后基金会特别资助项目,省部级课题,2019.08-2022.02,结题,主持
03. 中国博士后基金会面上资助项目,省部级课题,2020.05-2022.02,结题,主持
04. 重庆市出站来渝博士后择优资助项目,省部级课题,2024.06-2026.05,在研,主持
05. 中央高校基本科研业务费,校级课题,2023.01-2027.12,主持,在研
06. 重庆大学科研启动项目,校级课题,2023.01-2027.12,主持,在研
07. 新疆自治区区域协同创新专项科技援疆计划,省部级课题,2024.8-2026.8,执行负责人,在研
08. 重庆市技术创新与应用发展重点专项项目,省部级课题,2024.09-2027.08,执行负责人,在研
09. 中央高校基本科研业务项目,校级课题,2024.05-2026.04,执行负责人,在研
申获荣誉奖项
01. 重庆市高校一流本科课程《化工设计软件》(2024.10)
02. 中国化工学会基础研究成果奖二等奖,复杂工业系统性能评价及热集成方法,2023,省部级
03. 中国发明协会发明创新奖二等奖,多尺度化工能量系统功热耦合网络优化技术,2022,省部级
04. 全国大学生化工设计竞赛,指导教师,重庆大学,2023,一等奖
05. 全国大学生化工设计竞赛,指导教师,重庆大学,2023,二等奖
06. 全国大学生化工设计竞赛,指导教师,重庆大学,2023,三等奖
07. 全国大学生化工设计竞赛,指导教师,重庆大学,2023,三等奖
08. 重庆大学生化工设计竞赛,指导教师,重庆大学,2023,一等奖(金奖)
09. 重庆大学生化工设计竞赛,指导教师,重庆大学,2023,二等奖
10. 重庆大学生化工设计竞赛,指导教师,重庆大学,2023,二等奖
11. 重庆大学生化工设计竞赛,指导教师,重庆大学,2023,二等奖
代表性论文、专著和专利
[01]Yang L, Yang Z, Akram N, Chang Chenglin*, Mo WL, Weifeng Shen, Nan Zhang, Robin Smith. A hybrid algorithm framework for heat exchanger networks synthesis considering the optimal locations of multiple utilities. Chemical Engineering Science. 2025; 301: 120732. (SCI期刊论文)
[02]Lu Y, Jingzheng Ren, Mario Eden, Chang Chenglin*, Weifeng Shen. A penalty-free hybrid algoritm framework based on feasible stream matching principle for large-scale heat exchanger networks synthesis. Chemical Engineering Science. 2024; 298: 120419. (SCI期刊论文)
[03]Chang Chenglin, Lin Q, Wang J, Yang Y. Globally optimal design of refinery hydrogen networks with pressure discretization. Chemical Engineering Science. 2022, 247: 117021. (SCI期刊论文)
[04]Chang Chenglin, Liao, Costa A.L.H, Bagajewicz MJ. Globally optimal synthesis of heat exchanger networks. Part III: Non-isothermal mixing in minimal and non-minimal networks. AIChE Journal. 2021, 67: e17393. (SCI期刊论文)
[05]Chang Chenglin, Liao, Costa ALH, Bagajewicz MJ*. Globally optimal synthesis of heat exchanger networks. Part II: Non-minimal networks. AIChE Journal. 2020, 66: e16264. (SCI期刊论文)
[06]Chang Chenglin, Peccini A, Wang Y, Costa A.L.H, Bagajewicz MJ*. Globally optimal synthesis of heat exchanger networks. Part I: Minimal networks. AIChE Journal. 2020, 66: e162667. (SCI期刊论文)
[07] 李海东,张奇琪,杨路,Akram Naeem,常承林*,莫文龙,申威峰.采用智能进化算法的管壳式换热器详细设计研究. 化工学报.2024,Accepted.(EI期刊论文)
[08]Chang Chenglin*. A mathematical model for refinery hydrogen network synthesis integrating multi-stage compressors. International Journal of Hydrogen Energy. 2022, 47: 37677-37693. (SCI期刊论文)
[09]Chang Chenglin*, Shen WF. Global optimization of the design of intensified shell and tube heat exchanger using tube inserts. The Canadian Journal of Chemical Engineering. 2024, 102(1): 350. (SCI期刊论文)
[10]Chang Chenglin, Liao Z, Costa A.L.H, Bagajewicz MJ. Globally optimal design of intensified shell and tube heat exchangers using complete set trimming. Computers & Chemical Engineering. 2022, 158: 107644. (SCI期刊论文)
[11]Chang Chenglin, Liao Z, Bagajewicz MJ. New superstructure-based model for the globally optimal synthesis of refinery hydrogen networks. Journal of Cleaner Production. 2021, 292: 126022. (SCI期刊论文)
[12]Chang Chenglin, Wang Y, Feng X. Optimal synthesis of multi-plant heat exchanger networks considering both direct and indirect methods. Chinese Journal of Chemical Engineering. 2020, 28: 456-465. (SCI期刊论文)
[13]Chang Chenglin, Wang Y, Ma J, Chen X, Feng X. An energy hub approach for direct interplant heat integration. Energy. 2018, 159: 878-890. (SCI期刊论文)
[14]Chang Chenglin, Chen XL, Wang Y, Feng X. Simultaneous synthesis of multi-plant heat exchanger networks using process streams across plants. Computers & Chemical Engineering. 2017, 101: 95-109. (SCI期刊论文)
[15]Chang Chenglin, Chen XL, Wang Y, Feng X. Simultaneous optimization of multi-plant heat integration using intermediate fluid circles. Energy. 2017, 121: 306-317. (SCI期刊论文)
[16]Chang Chenglin, Chen XL, Wang Y, Feng X. An efficient optimization algorithm for waste Heat Integration using a heat recovery loop between two plants. Applied Thermal Engineering. 2016, 105: 799-806. (SCI期刊论文)
[17]Chang Chenglin, Wang Y, Feng X. Indirect heat integration across plants using hot water circles. Chinese Journal of Chemical Engineering. 2015, 23: 992-997. (SCI期刊论文)
[18]Song RR#, Chang Chenglin#, Tang QK, Wang YF, Feng X. EI-Halwagi MM. The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model. Energy. 2017, 135: 382-393. (共同第一作者SCI期刊论文)
[19]Chang Chenglin, Wang Y, Feng X, Zhang P. Efficient Solution Strategy for Stage-wise MINLP Model of Interplant Heat Integration using Heat Recovery Loop. Chemical Engineering Transactions. 2015, 45: 67-72. (EI期刊论文)
[20]Chang Chenglin, Wang Y, Feng X, Zhang P. A Two Step Methodology for Inter-Plant Heat Integration Design. Chemical Engineering Transactions. 2015, 45: 73-79. (EI期刊论文)
[21]李孟原等, 常承林*. 具有柔性拓扑结构的厂际多周期换热网络优化. 化工学报. 2023, 74(11): 4634-4644. (EI期刊论文)
[22]崔祎等, 常承林*. 采用扭曲片内插件的管壳式换热器自动设计新方法. 化工进展. 2024, 43(09): 4824-4832. (EI期刊论文)
[23]崔祎等, 常承林*. 1种管壳式冷凝器优化设计新方法. 化工生产与技术. 2022, 28: 26-31. (核心期刊论文)
[24]杨路等, 常承林*. 耦合有机朗肯循环的换热网络全局优化. 华东理工大学学报(自然科学版). 2024, 50: 1-10. (核心期刊论文)
[25]Yang L, Liu SS, Chang Chenglin, Yang SY*, Shen WF*. An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system. Chemical Engineering Science. 2024, 285: 119553. (SCI期刊论文)
[26]Dong X, Zhang CJ, Peng XY, Chang Chenglin, Liao Z, Yang Y, Sun JY, Wang JD, Yang YR. Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers. Energy. 2022, 238: 121916. (SCI期刊论文)
[27]Lin QC, Chang Chenglin, Liao Z, Sun JY, Jiang BB, Wang JD, Yang YR. Efficient Strategy for the Synthesis of Work and Heat Exchange Networks. Industrial & Engineering Chemistry Research. 2021, 60: 1756-1773. (SCI期刊论文)
[28]Wang Y, Wan ZH, Chang Chenglin, Feng X. A game theory based method for inter-plant heat integration considering cost allocation. Chinese Journal of Chemical Engineering. 2020, 28: 1652-1660. (SCI期刊论文)
[29]Zhang Z, Deng C*, Chang Chenlin, Kong FX, Lee JY, Denny K.S.N, Feng X. Optimal Design of a UF-RO Treatment System for Shale Gas Fracturing Flowback Wastewater. Industrial & Engineering Chemistry Research. 2020, 59: 5905-5920. (SCI期刊论文)
[30]Ma J, Chang Chenglin, Wang Y, Feng X. Multi-objective optimization of multi-period interplant heat integration using steam system. Energy. 2018, 159: 950-960. (SCI期刊论文)
[31]Wang Y, Chang Chenglin, Feng X. A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods. Energy. 2015, 90: 56-57. (SCI期刊论文)
[32]Wang Y, Feng X, Chang Chenglin. Heat integration between plants with combined integration patterns. Chemical Engineering Transactions. 2014, 39: 1747-1752. (EI期刊论文)
[33]Chen X, Chang Chenglin, Wang Y, Feng X. An energy hub approach for multiple-plants heat integration. Chemical Engineering Transactions. 2016, 52: 571-576. (EI期刊论文)