设为首页  |  加入收藏
 首 页  学院总览  人才培养  科学研究  党群院务  学生工作  招生就业  校友园地  安全工作 
当前位置: 首 页>>学院总览>>师资队伍>>预聘制研究员>>正文
 
杨韬
2017-04-13 10:05   审核人:

杨韬,研究员,博士生导师。2003年北京大学化学与分子工程学院获得学士学位,同年保送北京大学化学院硕博连读,2008年获得理学博士学位,并获得北大优秀博士论文和北大优秀毕业生等奖励。2008年至2011年先后在美国Rutgers University和英国University of Liverpool进行氧化物材料研究。2011加入重庆大学化学化工学院,与高文亮和丛日红副教授一起组建无机合成与固体材料实验室

E-mail: taoyang@cqu.edu.cn.

 

主持基金项目:

1.国家自然科学基金面上项目,21671028,利用固体化学方法研究可见光全分解水催化材料和高性能热电半导体,2017/01-2020/12

2.国家自然科学基金重大研究计划之培育项目,91222106PKU系列微孔硼铝酸盐的合成、晶体结构、金属掺杂与催化性质研究,2013/01-2015/12,。

3.国家自然科学基金面上项目,21171178,含铋的复杂氧化物体系中新型多铁性材料的开发研究,2012/01-2015/12

 

研究方向及发表论文:

1.稀土和含铋的金属多硼酸盐的合成、结构和光学性质

(1)     Ambient-pressure stabilization of β-GdB3O6 by doping with Bi3+ and color-tunable emissions by co-doping with Tb3+ and Eu3+: the first photoluminescence study of a high-pressure polymorph, Chem.-Asian J. 2017, 12, 1353-1363.

(2)     Tb3+ and Eu3+ co-doped Ba6Bi9B79O138: color-tunable phosphors utilizing host-sensitization effect of Bi3+ and enhancement of red emission upon heating, New J. Chem. 2017, 41, 2037-2045.

(3)     β-RE1-xBixB3O6 (RE= Sm, Eu, Gd, Tb, Dy, Ho, Er, Y): Bi3+-substitution induced formation of meta-stable rare earth borates at ambient pressure, Inorg. Chem. 2016, 55, 9276-9283.

(4)     Syntheses and luminescence study for La1-xEux[B5O8(OH)2]·1.5H2O (0 ≤ x ≤ 0.40) and the dehydrated products β-La1-xEuxB5O9 (0 ≤ x ≤ 0.15), J. Solid State Chem. 2016, 237, 159-165.

(5)     Symmetry dependent evolution of the Tb3+ photoluminescence in Ba6(RE1-xTbx)9B79O138 (RE = La and Y, 0 ≤ x ≤ 1) and Ce3+-to-Tb3+ sensitization effect: A re-visit to REBaB9O16, J. Alloy Compd. 2016, 658, 110-118.

(6)     Syntheses and luminescence of La1-xEux[B8O11(OH)5] and β-La1-xEuxB5O9 (0 ≤ x ≤ 0.135), New J. Chem. 2015, 39, 9886-9893.

(7)     Host sensitized photoluminescence and coordination environment evolution in Ba6(Bi1-xTbx)9B79O138 (0 ≤ x ≤ 1), Eur. J. Inorg. Chem. 2015, 30, 5045-5052.

(8)     Ba6(Bi1-xEux)9B79O138 (0 ≤ x ≤ 1): synergetic changing of the wavelength of Bi3+ absorption and the red-to-orange emission ratio of Eu3+, J. Mater. Chem. C 2015, 3, 6836-6843.

(9)     Approaching the structure of REBaB9O16 (RE = rare earth) by characterizations of its new analogue Ba6Bi9B79O138, J. Mater. Chem. C 2015, 3, 4431-4437.

(10) An outstanding Second-Harmonic Generation Material BiB2O4F: Exploiting the Electron-withdrawing Ability of Fluorine, Inorg. Chem. Front. 2015, 2, 170-176.

(11) Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce3+/Tb3+ phosphors, Dalton Trans. 2015, 44, 2276-2284.

(12) Syntheses and Luminescence of Complete Solid Solutions Gd1-xEux[B6O9(OH)3] and α-Gd1-xEuxB5O9, New J. Chem. 2014, 38, 122-131.

(13) Coordination environment evolution of Eu3+ during the dehydration and re-crystallization processes of Sm1-xEux[B9O13(OH)4]•H2O by photoluminescent characteristics, Dalton Trans. 2013, 42, 16318-16327.

(14) Observation of the Sixth Polymorph of BiB3O6: In Situ High-Pressure Raman Spectroscopy and Synchrotron Xray Diffraction Studies on the βPolymorph, Inorg. Chem. 2013, 52, 7460-7466.

(15) Rare earth induced formation of δ-BiB3O6 at ambient pressure with strong second harmonic generation, J. Mater. Chem. 2012, 22, 17934-17941.

2.PKU-系列硼铝酸盐的合成和催化性能

(1)     Octahedron-based redox molecular sieves M-PKU-1 (M = Cr, Fe): A novel dual-centered solid acid catalyst for heterogeneously catalyzed Strecker reaction, Appl. Catal. A: Gen. 2017, 542, 240-251.

(2)     Octahedral-based redox molecular sieve M-PKU-1: isomorphous metal-substitution, catalytic oxidation of sec-alcohol and related catalytic mechanism, J. Catal. 2017, 352, 130-141.

(3)     A nanosized aluminoborate (PKU-5) with Cr-centered octahedral framework: solid-phase synthesis, characterizations, and catalytic ammoximation of cyclohexanone to cyclohexanone azine, Appl. Catal. A: Gen. 2017, 531, 60-68.

(4)     Octahedron-based gallium borates (Ga-PKU-1) with an open-framework: acidity, catalytic dehydration and structure-activity relationship, Catal. Sci. Technol. 2016, 6, 5992-6001.

(5)     PKU-3: An HCl-inclusive aluminoborate for Strecker reaction solved by combining RED and PXRD, J. Am. Chem. Soc. 2015, 137, 7047-7050.

(6)     Photocatalytic overall water splitting over an open-framework gallium borate loaded with various cocatalysts, Catal. Commun. 2015, 71, 17-20.

(7)     (Al1-xCrx)4B6O15 (0.08 ≤ x ≤ 0.14): Metal Borates Catalyze the Dehydration of Methanol into Dimethyl Ether, Mater. Res. Bull. 2015, 65, 279-286.

(8)     Octahedra-based Molecular Sieve Alunimoborate (PKU-1) as Solid Acid for Heterogeneously Catalyzed Strecker Reaction, Cata. Commun. 2015, 58, 174-178.

(9)     Open-framework Gallium Borate with Boric and Metaboric Acid Molecules inside Structural Channels Showing Photocatalysis to Water Splitting, Inorg. Chem. 2014, 53, 2364-2366.

(10) Systematic Study of Cr3+ Substitution into Octahedra-based Microporous Aluminoborates, Inorg. Chem. 2014, 53, 5600-5608.

 

3.半导体光催化材料的设计合成与性能优化

(1)     In1-xGaxBO3 (0 ≤ x ≤ 0.5): Solvothermal syntheses, morphology and performance on photocatalytic water reduction, Eur. J. Inorg. Chem. 2017, 1, 63-68.

(2)     Bi2Ga4O9: An un-doped single-phase photocatalyst for overall water splitting under visible light, J. Catal. 2017, 345, 236-244.

(3)     Tetragonal β-In2S3: Partial ordering of In3+ vacancy and visible-light photocatalytic activities in both water and nitrate reduction, Catal. Commun. 2017, 88, 18-21.

(4)     Superior performance of CuInS2 for photocatalytic water treatment: Full conversion of highly stable nitrate ions into harmless N2 under visible light”, Catal. Sci. Technol. 2016, 6, 8300-8308.

(5)     ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light, Sci. Rep. 2016, 6, 30992

(6)     Cd12Ge17B8O58: a bulk borate material capable of photocatalytic H2 evolution from pure water, Catal. Commun. 2016, 84, 112-115

(7)     Photocatalytic H2 evolution for α-, β-, γ-Ga2O3 and the suppression to hydrolysis of γ-Ga2O3 by adjusting pH, adding a sacrificial agent or loading a cocatalyst, RSC Adv. 2016, 6, 59450-59456.

(8)     Intrinsic photocatalytic water reduction over PbGaBO4 comprising edge-sharing GaO6 chains, J. Alloy Compd. 2016, 684, 346-351.

(9)     Ba2InTaO6: A partially B-site ordered double perovskite for overall water splitting, Eur. J. Inorg. Chem. 2015, 35, 5786-5792.

(10) Photocatalytic reduction of nitrate over chalcopyrite CuFe0.7Cr0.3S2 with high N2 selectivity, J. Alloy Compd. 2015, 651, 731-736.

(11) Ga4B2O9: An Efficient Borate Photocatalyst for Overall Water Splitting without Co-catalyst, Inorg. Chem. 2015, 54, 2945-2949.

(12) Improving photocatalytic water reduction activity for In2TiO5 by loading metal cocatalysts, J. Alloy Compd. 2015, 646, 277-282.

(13) ZnGa2-xInxS4 (0 ≤ x ≤ 0.4) and Zn1-2y(CuGa)yGa1.7In0.3S4 (0.1 ≤ y ≤ 0.2): Optimize visible light photocatalytic H2 evolution by fine modulation of band structures, Inorg. Chem. 2015, 54, 2467-2473.

(14) Photocatalytic pure water splitting activities for ZnGa2O4 synthesized by various methods, Mater. Res. Bull. 2015, 61, 481-485.

(15) Organic-free hydrothermal synthesis of chalcopyrite CuInS2 and its photocatalytic activity for nitrate ions reduction, Mater. Lett. 2014, 137, 99-101.

(16) Co-molten solvothermal method for synthesizing chalcopyrite CuFe1-xCrxS2 (x ≤ 0.4): high photocatalytic activity for nitrate ions reduction, Dalton Trans. 2014, 43, 15385-15390.

(17) Flower-like Nanostructure MNb2O6 (M = Mn, Zn) with High Surface Area: Hydrothermal Synthesis and Enhanced Photocatalytic Performance, Mater. Res. Bull. 2014, 51, 271-276.

 

4.复合氧化物的合成与结构化学

(1)     Temperature-induced phase transitions for stuffed tridymites SrGa2O4 and CaGa2O4, J. Solid State Chem. 2017, 254, 195-199.

(2)     Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3, NPG Asia Mater. 2017, 9, e387.

(3)     Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism, J. Phys. Chem. Solids 2017, 110, 64-69.

(4)     Cr2Ge2Te6: high thermoelectric performance from layered structure with high symmetry, Chem. Mater. 2016, 28, 1611-1615.

(5)     B-site ordered double perovskite LaBa1-xSrxZnSbO6 (0 ≤ x ≤ 1): Sr2+-doping induced symmetry evolution and structure-luminescence correlations, Dalton Trans. 2016, 45, 3949-3957.

(6)     Y1-xScxBaZn3GaO7 (0 ≤ x ≤ 1): Structure evolution by Sc-doping and the first example of photocatalytic water reduction in “114” oxides, Inorg. Chem. 2016, 55, 1527-1534.

(7)     Effect of vacancy and activator concentrations on the luminescence of Sr1-1.5xTbx0.5xWO4 and Tb3+/Li+ co-doped phosphors, J. Alloy Compd. 2015, 645, 517-524.

(8)     Structural investigation of the A-site vacancy in Scheelites and the luminescence behaviors of two continuous solid solutions A1-1.5xEux0.5xWO4 and A0.64-0.5yEu0.24Liy0.12-0.5yWO4 (A = Ca, Sr; □ = vacancy), Dalton Trans. 2015, 44, 6175-6183.

(9)     Structure evolution in “114” CaBaZn2Ga2-xAlxO7 (x = 0, 1, 2) and layered cationic ordering in tetrahedral sites for CaBaZn2Al2O7, Dalton Trans. 2015, 44, 6069-6074.

(10) A new member of “114” family Ca1-xEuxBaZn2+xGa2-xO7 (x ≤ 0.24): Structure and Luminescence, J. Solid State Chem. 2013, 207, 105-110.

(11) Mullite-derivative Bi2MnxAl7-xO14 (x ~ 1): Structure determination by powder X-ray diffraction from a multi-phase sample, Dalton Trans. 2012, 41, 2884-2889.

关闭窗口
领导信箱 | 校园风光 | 网站地图 | 英文网站
版权所有 高校主站